Em uma mesma prateleira de uma
estante há 10 livros distintos, sendo cinco de Álgebra, três de Geometria e
dois de Trigonometria.
a) De quantos modos podemos arrumar esses livros nessa
prateleira, se desejamos que os livros de um mesmo assunto permaneçam juntos?
b) De quantos modos distintos podemos arrumar esses livros nessa
prateleira de modo que nas extremidades apareçam livros de Álgebra e os livros
de Trigonometria fiquem juntos?
Resolução:
Item A:
Podemos dividir os 10 livros em três grupos: Álgebra, Geometria e Trigonometria.
Álgebra: são cinco opções: __ __ __ __ __
Geometria: são 3 opções: __ __ __
Trigonometria: são 2 opções: __ __
Ao todo, temos 10 livros:
L1, L2, L3, L4, L5, L6, L7, L8, L9, L10
___ ___ ___ ___ ___ ___ ___ ___ ___ ___
Porém, como queremos que os livros de um mesmo assunto estejam juntos.
É o método TUDO JUNTO.
A1, A2, A3, A4, A5 G1, G2, G3 T1, T2
__ __ ___ ___ ___ ___ ___ ___ ___ ___
Para a 1ª lacuna, temos 5 opções de ágebra.
Para a 2ª lacuna, temos 4 opções.
Para a 3ª temos 3 opções,
para a 4ª temos 2 opções e
para a 5ª temos 1 opção.
Assim, fica: 5.4.3.2.1 = 120 opções.
A 6º lacuna é para Geometria. Temos 3 opções.
Para a 7ª lacuna temos 2 opções e para a 8ª temos 1 opção.
Fica: 3.2.1 = 6 opções.
A 9ª lacuna é para o livro de Trigonometria. São 2 opções.
Para a 10ª lacuna temos 1 opção.
Fica: 2.1 = 2 opções.
Assim, temos em cada grupo
120 6 2
________ ________ _________
grupo 1 grupo 2 grupo 3
Álgebra Geometria Trigonometria
Isso veio de:
5! . 3! . 2!
________ ________ _________
grupo 1 grupo 2 grupo 3
Álgebra Geometria Trigonometria
Ao multiplicarmos as opções, temos: 120 . 6 . 2 = 1440 opções.
No entanto, temos 1440 opções para a os grupos na ordem Álgebra, Geometria e Trigonometria.
Mas, há mais 1440 opções na ordem Álgebra, Trigonometria e Geometria.
e mais 1440 opções para cada ordem.
Quantas ordens podemos fazer entre os 3 assuntos?
________ ______ ______
3 opções 2 opções 1 opção
de assunto de assunto de assunto
Ao todo temos 3.2.1 = 6 opções de assuntos.
Se cada opção tem 1440, logo, 1440 x 6 = 8.640 modos.
R: 8640 modos.
_______________________________________________________________________________
Ou ainda:
Quero dividir em 3 opções: 3! = 3.2.1 = 6
cada opção é subdividida em 5, 3 e 2: 5! x 3! x 2! = 120 x 6 x 2
Temos 6 x 120 x 6 x 2 = 8.640.
R: 8640 modos.
_____________________________________________________________________________
Item B:
De quantos modos distintos podemos arrumar esses livros nessa prateleira de modo que nas extremidades apareçam livros de Álgebra e os livros de Trigonometria fiquem juntos?
Nas extremidades devem ficar os livros de Álgebra
___ ___ ___ ___ ___ ___ ___ ___ ___ ___
5 4
Para a 1ª lacuna teremos 5 opções para Álgebra e para a última lacuna serão 4, já que colocamos 1 livro na primeira lacuna.
Os livros de Trigonometria devem ficar juntos. É a regra do TUDO JUNTO.
Juntando as lacunas de Trigonometria, que são 2 opções, temos
___ ______ ___ ___ ___ ___ ___ ___ ___
5 trig 4
Sendo que para aquela lacuna, temos 2 opções.
___ ______ ___ ___ ___ ___ ___ ___ ___
5 2 4
Usamos 1 na primeira lacuna, 1 na segunda lacuna e 1 na última lacuna, ou seja, 3 livros.
Como são 10, ainda faltam 7. Então, na terceira lacuna teremos 7 opções.
___ ______ ___ ___ ___ ___ ___ ___ ___
5 2 7 6 5 4 3 2 4
Multiplicando as opções acima, temos 201.600
R: São 201.600 modos.