E0140 - Quantos são os anagramas a palavra "CAPÍTULO".

a) possíveis?
b) que comecem e terminem por vogal?
c) que têm as vogais e as consoantes intercaladas?
d) que têm as letras c, a, p juntas nessa ordem?
e) que têm as letras c, a, p juntas em qualquer ordem?
f) que têm a palavra p em primeiro lugar e a letra a em segundo?
g) que têm a letra p em primeiro lugar ou a letra a em segundo?
h) que têm a letra p em primeiro lugar ou a em segundo ou c em terceiro?
i) nos quais a letra a é uma das letras à esquerda de p e a letra c é uma das letras à direita de p?


Resolução:


Quantos são os anagramas a palavra "CAPÍTULO".

a) possíveis?

Não tem letras repetidas. Fatorial de 8!

8.7.6.5.4.3.2.1 = 40.320.

_______________________________________________________________________________

b) que comecem e terminem por vogal?

_ _ _ _ _ _ _ _
a.b.c.d.e. f.g. h 

Vamos começar pelas restrições:
a= 4 : só pode ser vogal: temos 4 opções.
h = 3 : só pode terminar com vogal. Se escolhemos 1 vogal e a, sobraram 3.
b = 6 (deveriam ser 8, mas escolhemos a e h)
c = 5
d = 4
e = 3
f = 2
g = 1

Temos, então: 4.6.5.4.3.2.1.3 ou 3.4.6! = 8.640 anagramas começando e terminando por vogais.


_______________________________________________________________________________

c) que têm as vogais e as consoantes intercaladas?

_ _ _ _ _ _ _ _
a.b.c.d.e.f. g. h

a = 4 : seja o início com vogais.
b = 4 : se o início foi com vogais, temos agora 4 consoantes.
c = 3 : Aqui será vogal. Eram 4, mas colocamos 1 em a, ficando 3.
d = 3
e = 2
f = 2
g = 1
h = 1

Temos: 4.4.3.3.2.2.1.1 = 576 anagramas começando com vogais. 
Mas, teremos mais 576 anagramas começando com consoantes.

Assim, temos como total de anagramas 576 + 576 = 1.152 anagramas.

_______________________________________________________________________________

d) que têm as letras c, a, p juntas nessa ordem?

_ _ _ _ _ _ _ _

Letras juntas, juntamos as lacunas e as letras.

CAP - I - T  U - L - O 

______ _ _ _ _ _
     a      b  c d e f 

a: Temos 6 opções, já que juntamos as letras.
b: aqui ficaram 5, já que colocamos 1 opção em a.
c: 4
d: 3
e: 2
f: 1

Fica: 6.5.4.3.2.1 = 720 anagramas.

_______________________________________________________________________________

e) que têm as letras c, a, p juntas em qualquer ordem?

No caso acima, achamos 720 anagramas na ordem cap. 
Agora, não importa a ordem. Logo, temos 720 para cap, 720 para cpa, 720 para acp, 720 para apc, 720 para pac e 720 para pca, ou seja, temos 720 x 6 = 4.320 anagramas.

Ou,
Quando temos anagramas com letras juntas em qualquer ordem, calculamos a quantidade normal e depois multiplicamos pelo fatorial das letras juntas.
Neste caso, temos e 3 letras. Multiplicaremos por 3! = 6

O normal é 6! = 720
720 x 6 = 4320



_______________________________________________________________________________

f) que têm a palavra p em primeiro lugar e a letra a em segundo?

p a _ _ _ _ _ _
      a.b.c.d.e.f

a = 6 opções, já que 2 delas já foram usadas.
b = 5
c = 4
d = 3
e = 2
f = 1

Fica: 6.5.4.3.2.1 = 720 anagramas.

_______________________________________________________________________________

g) que têm a letra p em primeiro lugar ou a letra a em segundo?

Neste caso, apareceu a palavrinha OU, ao invés de E.

Vamos fazer com a letra p em primeiro lugar:

p _ _ _ _ _ _ _
   7.6.5.4.3.2.1 = 5.040.

Em seguida, vamos fazer com a letra a em segundo:

_ a _ _ _ _ _ _
7.1.6.5.4.3.2.1 = 5040.


Somando os dois, temos 5040 + 5040 = 10.080.

Perceba que quando começou com p, tivemos 5040 anagramas, incluindo p a _ _ _ _ _ _, que começa com p.

Quando fizemos com a em segundo, tivemos, também, p a _ _ _ _ _ _, que tem a em segundo.

Assim, contamos duas vezes a opção p a _ _ _ _ _ _.

Logo, desses 10.080 anagramas, temos que uma das opções p a _ _ _ _ _ _, que foi cotado duas vezes.

Mas, quantas são essas opções?

p a _ _ _ _ _ _
      6.5.4.3.2.1 = 720.

Assim, 10.080 - 720 = 9.360 anagramas.

_______________________________________________________________________________

h) que têm a letra p em primeiro lugar ou a em segundo ou c em terceiro?

Aqui teremos 3 contas:

p em primeiro lugar:

p _ _ _ _ _ _ _
   7.6.5.4.3.2.1 = 5.040

a em segundo lugar:

_ a _ _ _ _ _ _
7.1.6.5.4.3.2.1 = 5.040

c em terceiro lugar:

_ _ c _ _ _ _ _
7.6.1.5.4.3.2.1 = 5.040

Somando as três, temos 5.040 + 5.040 + 5.040 = 15.120.

Da mesma forma que o exercício anterior, tem anagramas dentre esses 15.120 que foram contados mais de uma vez:

p a _ _ _ _ _ _
     6.5.4.3.2.1 = 720

p _ c _ _ _ _ _
   6.1.5.4.3.2.1 = 720

_ a c _ _ _ _ _
6.1.1.5.4.3.2.1 = 720

Só aqui temos 720 x 3 = 2.160 anagramas repetidos.

15.120 - 2.160 = 12.960 anagramas.


Observe que, ao tirar p a _ _ _ _ _ _, acabamos tirando o p a c _ _ _ _ _ , por isso, tendo que devolver.

Mas, quanto é p a c _ _ _ _ _ ?

p a c _ _ _ _ _ 
        5.4.3.2.1 = 120

Tínhamos 12.960 anagramas, devolvendo 120, ficamos com 13.080 anagramas!

______________________________________________________________________________


i) nos quais a letra a é uma das letras à esquerda de p e a letra c é uma das letras à direita de p?

C - A - P - I - T - U  L - O

_ _ _ _ _ _ _ _
 a.b.c.d.e.f.g. h

Quero A P C

Considerando P:

em a: não pode, pois deve ter A à sua esquerda.

em b: neste caso, temos:

A P _ _ _ _ _ _
      6.5.4.3.2.1 = 720 anagramas

em c: fica assim:

A _ P _ _ _ _ _        ou  _ A P _ _ _ _ _
1.5.1.5.4.3.2.1               5.1.1.5.4.3.2.1      = 1200 anagramas.

Observe que C não pode estar à esquerda de P.

em d: fica:

A _ _ P _ _ _ _   ou  _ A _ P _ _ _ _  ou  _ _ A P _ _ _ _
    5.4.1.4.3.2.1         5.1.4.1.4.3.2.1        5.4.1.1.4.3.2.1   =  1440 anagramas

em e: fica 

A _ _ _ P _ _ _ ou _ A _ _ P _ _ _ ou _ _ A _ P _ _ _ ou _ _ _ A P _ _ _
   5.4.3.1.3.2.1.      5.1.4.3.1.3.2.1      5.4.1.3.1.3.2. 1      5.4.3.1.1.3.2.1   = 1440 anagramas

em f:

A _ _ _ _ P _ _ ou _ A _ _ _ P _ _ ou _ _ A _ _ P _ _ ou _ _ _ A _ P _ _ ou _ _ _ _ A P _ _ 
   5.4.3.2.1.2.1      5.1. 4.3.2.1.2.1      5.4.1.3.2.1.2.1      5.4.3.1.2. 1.2.1      5.4.3.2.1.1. 2.1

totalizando 1200 anagramas

em g:

A _ _ _ _ _ P _ ou _ A _ _ _ _ P _ ou _ _ A _ _ _ P _ ou _ _ _ A _ _ P _ ou _ _ _ _ A _ P _
   5.4.3.2.1.1.1       5.1.4.3.2.1.1.1      5.4.1.3.2.1.1.1       5.4.3.1.2.1.1.1      5.4.3.2.1.1.1.1

ou _ _ _ _ _ A P _    
     5.4.3.2.1.1.1.1   = 720 anagramas.

em h:

P não pode ficar em h, pois o C não poderia estar à sua direita.


Observe que, juntando todas as opções, temos:

a: zero
b: 720
c: 1200
d: 1440
e: 1440
f: 1200
g: 720
h: zero

Somando, fica: 720 + 1200 + 1440 + 1440 + 1200 + 720 = 6.720 anagramas.